MOLECULAR TYPING WITH REPETITIVE SEQUENCE-BASED PCR (REP-PCR) OF STAPHYLOCOCCUS AUREUS ISOLATED FROM HUMAN AND ANIMAL CLINICAL SAMPLES

SANDEEP KUMAR SHARMA*, BINCY JOSEPH, MANISH AGRAWAL¹, VIKAS GALAV¹, SHARAT

CHANDER MEHTA² and ANIL KUMAR KATARIA³

Department of Veterinary Microbiology, ¹Department of Veterinary Pathology, Post-Graduate Institute of Veterinary Education and Research (PGIVER), Jaipur ²National Research Centre on Equines, Indian Council of Agricultural Research (ICAR) Bikaner (Raj.), India ³Department of Veterinary Microbiology, College of Veterinary and Animal Science, Rajasthan University of Veterinary and Animal sciences (RAJUVAS), Bikaner, Rajasthan, India

Received: 28.03.24; Accepted: 12.06.24

ABSTRACT

Repetitive element sequence-based PCR (*rep*-PCR) is a genotyping method that target noncoding repetitive sequences interspersed throughout the bacterial genome and abled to generate DNA fingerprinting that discriminates bacterial strains. Hence, the present study was designed to evaluate the applicability of *rep*-PCR in molecular typing of *Staphylococcus aureus* isolated from human and animal clinical samples. To achieve the target, total 157 genotypically confirmed *S. aureus* isolates obtained from various clinical samples of human, ruminants (cattle, buffalo, goat and sheep), non- ruminants (pig and camel) and companion animals (horse and dog) were included in study. The *rep*-PCR demonstrated a higher discriminatory power (D.I. 0.8892) with thirty six different rep patterns, comprising of 300 to 1400 bp band sizes. Out of the total isolates, 156 isolates were typeable with *rep*-PCR while one isolate (J9) from camel was exceptionally non-typeable. All isolates were classified into five clusters at 80% genetic similarity level and the animal and human isolates fell into different cluster with high genetic discrimination. The study provides valuable inputs in regards to suitability of *rep*-PCR as molecular tool to differentiate the *S. aureus* isolates of different origins.

Keywords: rep-PCR, S. aureus, Molecular typing, Human, Animal

How to cite: Sharma, S.K., Joseph, B., Agrawal, M., Galav, V., Mehta, S.C. and Kataria, A.K. (2025). Molecular typing with repetitive sequencebased PCR (*rep*-PCR) of *Staphylococcus aureus* isolated from human and animal clinical samples. *The Haryana Veterinarian* **64(1)**: 1-6.

Staphylococcus aureus is an important Gram positive pathogen of human and animal and is associated with various suppurative infections. In human, it is associated with food toxicity, skin infections, pneumonia, deep abscesses, osteomyelitis and endocarditis. In animals, this organism known to cause mastitis, endometritis, pyoderma, cystits, dermatitis, scirrhous cord, tick pyaemia and bumble foot in poultry along with many unique phenotypic characteristics (Naber, 2009; Sharma *et al.*, 2013; Sharma *et al.*, 2018; Verma *et al.*, 2023).

Looking to the variations in phenotypic and biochemical characteristics of *S. aureus* isolates, DNA based molecular methods have been found most effective tools for typing of the various origin. Molecular typing is an important tool to confirm the epidemiological relationships and monitoring the local and international spread (Tenover *et al.*, 1994; Zehra *et al.*, 2020). *S. aureus* strains were reported with variations in their genome so molecular typing is necessary to differentiate epidemic, nonepidemic strains and also comparison of *S. aureus* strains from human and animal origin. The ideal system for the molecular typing of *S. aureus* strains should be easy, rapid, reliable, highly discriminatory and reproducible (Diep *et al.*, 2003; Yadav *et al.*, 2015).

The prokaryotic chromosomes having unique repeat DNA sequences which can able to produce specific DNA fingerprint pattern for an individual strain. These repetitive sequences are existing as three types i.e. repetitive extragenic palindromic (rep) sequence, enterobacterial repetitive intergenic consensus (ERIC) sequence and BOX element sequences (Del Vecchio et al., 1995). Out of these three, repetitive extragenic palindromic (rep) sequence based PCR method is most referred and proven methodology (Shutt et al., 2005). The rep-PCR was proven to be a highly discriminating and rapid screening molecular typing method based on short repetitive sequence elements distributed throughout the bacterial genome to create DNA fingerprints to discriminate and to classify variety of staphylococcal infections without the need of enzyme digestion techniques (Arabestani et al., 2022). Hence present study was designed to detect and establish genetic variations among different S. aureus isolates from human and animal samples using rep-PCR technique.

MATERIALS AND METHODS

Bacterial Isolates

In the present investigation, 157 genotypically confirmed (23S *rRNA* based species-specific primers) *Staphylococcus aureus* isolates were subjected to

^{*}Corresponding author: drsharmask01@hotmail.com

molecular typing (Sharma *et al.*, 2017). The samples were collected in and around Bikaner region of Rajasthan and all 157 isolates belong to human clinical samples (35), meat samples (20), horse wounds (03), pig nasal swabs (02), camel wounds (08), dog skin swabs (06), sheep clinical samples (06), buffalo mastitic milk (21), goat mastitic milk (28) and cattle mastitic milk (28).

Repetitive element sequence-based PCR (rep-PCR)

Genomic DNA was isolated from all 157 S. aureus isolates as per protocol of HiPer® Bacterial Genomic DNA Extraction Kit (HTBM008). The integrity of DNA was checked by submerged agarose gel electrophoresis. Each DNA sample was mixed with one-fifth volume of the gel loading buffer. For electrophoresis, 0.8 per cent agarose gel in TBE buffer containing ethidium bromide $(0.5-1.0 \ \mu g)$ was used. The repetitive element sequencebased PCR (rep-PCR) was carried out as per van Belkum et al. (1995). DNA amplification consisted of a cycle of pre denaturation at 94° C for 5 minute, followed by 40 cycles of 1 minute denaturation at 93° C, 1.30 minute annealing at 37º C and 1 minute extension at 72º C. A final extension step of 72° C for 10 minute was included. A negative and a positive control were also included. Each isolate was tested under the same conditions at least twice with the selected single rep-PCR primer (5'-TCG CTC AAA ACA ACG ACA CC-3'). Amplified products were separated by electrophoresis in a 1.5% Metaphore- agarose gel in 1-X TBE buffer at a constant voltage of 4 V/cm and stained using ethidium bromide (0.5 µg/ml). Variable multiple rep-PCR product patterns were obtained (Fig. 1). The rep-PCR pattern and dendrogram analysis was performed as described by Reinoso et al. (2004) with DICE & UPGMA (Unweighted Pair Group Method with Arithmetic Mean) methods by MEGA 6 bioinformatics software. The Discriminatory Power (D)/ discriminatory index (D.I.) was calculated by formula of Simpsons index of diversity as described in the method of Hunter (1990).

RESULTS AND DISCUSSION

The study was attempted to type *S. aureus* isolates obtained from clinical samples of human and animals along with establishment of *rep*-PCR method to determine genetic variations among bacterial isolates. During *rep*-PCR screening, total 36 different *rep* patterns (Table 1) detected which comprises amplified products in the range from 300 to 1400 bp (Fig. 1) among the total 157 studied isolates. In the present investigation, all isolates differentiated with 0.8892 discriminatory index (D.I.) which indicates high level of discrimination of *S. aureus* isolates by *rep*-PCR. Out of the total isolates, one isolate (J9) from camel was exceptionally non-typeable with *rep*- PCR while remaining 156 isolates were typeable with *rep*-PCR. The pattern *rep* 30 was most common with 47 cattle and goat origin isolates followed by *rep* 17 with 13 isolates which belonged to sheep, horse and camel. Then, *rep* 7 pattern comprises 10 isolates of human origin and other remaining *rep*-patterns comprising with less than seven isolates of different origins. The production of large number of separate *rep*-patterns in isolates of different origin in the present study indicated usefulness of the method in differentiating *S. aureus* from various sources.

In the source-wise analysis of *rep*-patterns it was found that human isolates were differentiated into maximum rep-profiles (16 rep-profiles) indicating more variations while sheep isolates were grouped only into one rep-pattern (rep 17) indicating minimal variations. Other sources including variable number of rep profiles i.e. meat sample (11 rep-patterns), buffalo (8 rep-patterns), camel (6 rep-patterns) dog (5 rep- patterns) and remaining sources having less than four rep-patterns with less variabilities as described in Table 2. The phylogenetic cluster analysis of various rep-patterns was attempted and all 36 rep-patterns were classified into five clusters on the basis of 80% genetic similarity (Fig. 2). The cluster analysis indicates that most of animal origin isolates were separately clustered (Ist and Vth cluster) in comparison to human origin isolates and meat piece origin isolates (IInd and IVth cluster). The fifth cluster comprising 73 isolates and most of belongs to cattle, goat and buffalo while fourth cluster having 41 isolates of human and meat piece samples. Few *rep*-patterns fell into both human and animal clusters with indication of cross transmission between human and animals. It may also be concluded that human isolates could be separately differentiated from animal origin isolates even up to 80% similarity level. Similar to present study, Reinoso et al. (2008) have also reported 35 rep profiles along with seven different clusters in dendrogram analyses at 60% of relative genetic similarity level among 45 S. aureus strains studied by rep-PCR obtained from humans, bovine subclinical mastitis and food samples. In a study by Dini et al. (2019) the results of the rep-PCR analysis revealed 14 different patterns (seven common types and seven unique types) among 55 isolates of the Methicillin-resistant S. aureus (MRSA) and Methicillinsusceptible S. aureus (MSSA) strains. Reinoso et al. (2007) assessed genetic relationship of 52 S. aureus strains isolated from mammary gland infections of bovine origin and similar to present study, they also detected a total of 31 rep-profiles in the range size from 300 to 6000 bp during rep-PCR analysis. At the level of 50% similarity, it could be defined 5 clusters namely I to V and most of the strains (75%) were grouped in cluster I and suggested that rep-

S.No.	<i>rep</i> pattern I.D.	<i>rep</i> pattern	Number of	<i>S. aureus</i> Isolate I.D.
1	1	5001 (001	15012105	111
1.	rep 1	500bp, 600bp	1	HI
2.	rep 2	300bp, 500bp, 600bp, 700bp, 1000bp, 1050bp	I	
з. 4	rep 5	200hr 500hr 600hr 700hr	0	H3, H4, H13, H21, H24, Mt15
4. 5	rep 4	2001 (001 0001 10001 14001	1	
з. с	rep 5	200hp, 700hp, 1000hp, 1400bp	5	H14 Mt21 12 D26
0. 7	rep 6	200hr, 700hr, 750hr, 1000hr, 1050hr	4	H14, MI31, J2, B20
/.	rep /	зоовр, 700вр, 750вр, 1000вр, 1050вр	10	H29, H35, H37, H39, H40, H41, H46, H48, Mt2, Mt9
8.	rep 8	300bp, 700bp, 800bp, 1000bp, 1050bp	2	Mt1,Mt4
9.	rep 9	300bp, 600bp, 700bp, 750bp, 1000bp, 1050bp	1	H45
10.	<i>rep</i> 10	300bp, 600bp, 700bp, 1000bp, 1050bp	5	Mt3, Mt10, Mt11, Mt13, Mt14
11.	<i>rep</i> 11	300bp, 400bp, 600bp, 700bp, 1000bp	2	D13, B46
12.	rep 12	300bp, 400bp, 600bp, 700bp, 1050bp	3	B5, B19, B21
13.	rep 13	300bp, 500bp, 700bp, 750bp, 1000bp, 1050bp	1	H12
14.	<i>rep</i> 14	600bp, 900bp, 1000bp, 1400bp	1	H8
15.	rep 15	400bp, 700bp, 1000bp, 1050bp	1	H31
16.	<i>rep</i> 16	300bp, 600bp, 700bp, 750bp	2	H30,H34
17.	<i>rep</i> 17	300bp, 600bp, 700bp, 1000bp	13	Mt19, Hrs3, Hrs4, Pg2, J14, J18, D10, SV2, SV3, SV4, SN3, SN4, SN14
18.	<i>rep</i> 18	300bp, 600bp, 1000bp, 1050bp	2	Mt20, Mt24
19.	<i>rep</i> 19	300bp, 400bp, 700bp, 1000bp	2	D7, B24
20.	rep 20	300bp, 400bp, 700bp, 750bp, 1000bp	1	D9
21.	rep 21	300bp, 400bp, 600bp, 1000bp	7	B27, B28, B29, B30, B31, B34, B36
22.	rep 22	300bp, 400bp, 600bp, 700bp	6	B10, B39, B42, B43, B55, B57
23.	rep 23	300bp, 350bp, 600bp, 700bp	6	AG8, G29, C3R, C8, C17, C22
24.	<i>rep</i> 24	300bp, 350bp, 600bp, 1000bp	2	G46, C15
25.	rep 25	300bp, 700bp, 1400bp	1	H27
26.	<i>rep</i> 26	300bp, 600bp, 700bp	3	H44, Mt27, B23
27.	rep 27	300bp, 800bp, 1000bp	1	Hrs1
28.	<i>rep</i> 28	600bp, 700bp, 1000bp	1	J4
29.	rep 29	300bp, 400bp, 700bp	1	J15
30.	<i>rep</i> 30	300bp, 350bp, 600bp	47	AG5, AG6, AG10, AG13, AG15, AG17, G1, G2, G7, G9, G10, G11, G16, G21, G24, G35, G37, G39, G40, G41, G43, G45, G47, G49, G55, C2, C5R, C7, C9, C11, C12, C13, C20, C23, C26, C29, C34, C36, C37, C39, C40, C41, C43, C46, C47, C50, C52
31.	<i>rep</i> 31	300bp, 700bp	5	H7, H16, H22, H25, J10
32.	rep 32	400bp, 1000bp	1	H13
33.	rep 33	300bp, 600bp	7	Mt22, Mt25, Mt28, J3, D4, D6, C2R
34.	<i>rep</i> 34	300bp, 1000bp	1	Mt26
35.	rep 35	600bp	2	Mt12, Pg4
36.	<i>rep</i> 36	300 bp	1	B1

S.No.	Source of Isolate	S. No.	<i>rep</i> pattern I.D.	<i>rep</i> pattern	Number of Isolates	Isolate I.D.	Total No. of Isolate
1.	Human	1.	rep1	500bp, 600bp	1	H1	35
		2.	rep2	300bp, 500bp, 600bp, 700bp, 1000bp, 1050bp	1	H2	
		3.	rep3	300bp, 700bp, 1000bp, 1050bp	5	H3, H4, H15, H21 and H24	
		4.	rep4	300bp, 500bp, 600bp, 700bp	1	H5	
		5.	rep5	300bp, 600bp, 900bp, 1000bp, 1400bj	5	H6, H9, H10, H11 and H28	
		6.	rep6	300bp, 700bp, 1000bp	1	H14	
		7.	rep /	300bp, 700bp, 750bp, 1000bp, 1050bj	5 8	H29, H33, H37, H39, H40, H41, H46 and H48	
		8.	rep9	300bp, 600bp, 700bp, 750bp, 1000bp, 1050bp	1	H45	
		9.	rep13	300bp, 500bp, 700bp, 750bp, 1000bp, 1050bp	1	H12	
		10.	rep14	600bp, 900bp, 1000bp, 1400bp	1	H8	
		11.	rep15	400bp, 700bp, 1000bp, 1050bp	1	H31	
		12.	rep16	300bp, 600bp, 700bp, 750bp	2	H30,H34	
		13.	rep25	300bp, 700bp, 1400bp	1	H27	
		14.	rep26	300bp, 600bp, 700bp	1	H44	
		15.	rep31	300bp, 700bp	4	H7, H16, H22 and H25	
		16.	rep32	400bp, 1000bp	1	H13	
2.	Meat Piece	1.	rep3	300bp, 700bp, 1000bp, 1050bp	1	Mt15	20
		2.	rep6	300bp, 700bp, 1000bp	1	Mt31	
		3.	rep7	300bp, 700bp, 750bp, 1000bp, 1050bp	2	Mt2 and Mt9	
		4.	rep8	300bp, 700bp, 800bp, 1000bp, 1050bp	2	Mt1 and Mt4	
		5.	rep10	300bp, 600bp, 700bp, 1000bp, 1050bp	5	Mt3, Mt10, Mt11, Mt13 and Mt14	
		6.	rep17	300bp, 600bp, 700bp, 1000bp	1	Mt19	
		7.	rep18	300bp, 600bp, 1000bp, 1050bp	2	Mt20 and Mt24	
		8.	rep26	300bp, 600bp,700bp	1	Mt27	
		9.	rep33	300bp, 600bp	3	Mt22, Mt25 and Mt28	
		10.	rep34	300bp, 1000bp	1	Mt26	
		11.	rep35	600bp	1	Mt12	
3.	Horse	1.	rep17	300bp, 600bp, 700bp, 1000bp	2	Hrs3 and Hrs4	3
		2.	rep27	300bp, 800bp, 1000bp	1	Hrs1	
4.	Pig	1.	rep17	300bp, 600bp, 700bp, 1000bp	1	Pg2	2
		2.	rep35	600bp	1	Pg4	
5.	Camel	1.	rep6	300bp, 700bp, 1000bp	1	J2	8
		2.	rep17	300bp, 600bp, 700bp, 1000bp	2	J14 and J18	
		3.	rep28	600bp, 700bp, 1000bp	1	J4	
		4.	rep29	300bp, 400bp, 700bp	1	J15	
		5.	rep31	300bp, 700bp	1	J10	
		6.	rep33	300bp, 600bp	1	J3	
		7.	-	-	1	J9	
6.	Dog	1.	rep11	300bp, 400bp, 600bp, 700bp, 1000bp	1	D13	6
		2.	rep17	300bp, 600bp, 700bp, 1000bp	1	D10	
		3.	rep19	300bp, 400bp, 700bp, 1000bp	1	D7	
		4.	rep20	300bp, 400bp, 700bp, 750bp, 1000bp	1	D9	
		5.	rep33	300bp, 600bp	2	D4 and D6	
7.	Sheep	1.	rep17	300bp, 600bp, 700bp, 1000bp	6	SV2, SV3, SV4, SN3, SN4 and SN14	6
8.	Buffalo	1.	rep6	300bp, 700bp, 1000bp	1	B26	21

Table 2.	Group w	vise distribı	ution of <i>re</i> j	p patterns an	nong <i>Staphyloco</i>	ccus aureus isolates

		2. 3. 4. 5. 6. 7. 8.	rep11 rep12 rep19 rep21 rep22 rep26 rep36	 300bp, 400bp, 600bp, 700bp, 1000bp 300bp, 400bp, 600bp, 700bp, 1050bp 300bp, 400bp, 700bp, 1000bp 300bp, 400bp, 600bp, 1000bp 300bp, 400bp, 600bp, 700bp 300bp, 600bp, 700bp 300bp, 600bp, 700bp 	1 3 1 7 6 1 1	B46 B5, B19 and B21 B24 B27, B28, B29, B30, B31, B34 and B36 B10, B39, B42, B43, B55 and B57 B23 B1	
9.	Goat	1. 2. 3.	rep23 rep24 rep30	300bp, 350bp, 600bp,700bp 300bp,350bp,600bp, 1000bp 300bp, 350bp, 600bp	2 1 25	AG8 and G29 G46 AG5, AG6, AG10, AG13, AG15, AG17, G1, G2, G7, G9, G10, G11, G16, G21, G24, G35, G37, G39, G40, G41, G43, G45, G47, G49 and G55	28
10.	Cattle	1. 2. 3. 4.	rep23 rep24 rep30	300bp, 350bp, 600bp, 700bp 300bp, 350bp, 600bp, 1000bp 300bp, 350bp, 600bp 300bp, 600bp	4 1 22 1	C3R, C8, C17 and C22 C15 C2, C5R, C7, C9, C11, C12, C13, C20, C23, C26, C29, C34, C36, C37, C39, C40, C41, C43, C46, C47, C50 and C52 C2R	28

Fig. 1. Various rep patterns (repetitive element sequence-based PCR) of *S. aureus*

PCR typing successfully differentiated *S. aureus* strains of bovine origin. In consent to present study, Memon *et al.* (2013) also studied *S. aureus* isolated from bovine subclinical mastitis from Eastern China by *rep*-PCR and reported 34 *rep*-profiles and seven distinct genotypes during dendrogram analysis. Pinto *et al.* (2015) had also attempted to assess clonal relationships among the *S. aureus* strains (n = 29) obtained from chilled and frozen raw poultry parts from seven different Brazilian broiler chicken processors. The isolates were grouped into three major clusters based on *rep*-PCR fingerprints typed and similar to present study they concluded that *rep*-PCR technique can able to establish a clonal relationship among the *S. aureus*.

Similar to the present study, many researchers like del Vecchio et al. (1995), Gardella et al. (2005); Nordin et

Fig. 2. Phylogenetic cluster analysis (Dendrogram analyses) of *S. aureus* rep patterns

al. (2010) and Arabestani et al. (2022) etc. analyzed MRSA and MSSA strains from various clinical infections to differentiate them from each other and they have also reported that *rep*-PCR was potential tool to determine genomic differences among *S. aureus* strains from different sources. A study on 31 *S. aureus* isolates from pastries food samples to demonstrate genetic diversity among isolates at Hamadan, Iran has detected eight different *rep*-PCR types with the similarity cut off \geq 95% and seven different *rep*-PCR profiles, including five common types and 2 unique types. Similar to present study, the study proved that *rep*-PCR technique is one of the important methods to demonstrate genetic diversity as well as established existence of different *rep*-types of *S. aureus* isolates (Arabestani *et al.*, 2022).

CONCLUSION

Based on different *rep*- patterns and cluster classification detected in the *rep*-PCR technique, the study may conclude that repetitive sequence-based PCR (*rep*-PCR) is found suitable and potential tool which permits differentiation of isolates to species, subspecies and strain level. Although, *rep*-PCR is more suitable molecular technique in comparison to routine bacteriological methods but looking to some limitation i.e. costs of materials, lack of advance equipped laboratories, this study warrants some other typing methods for further characterization of the isolates.

REFERENCES

- Arabestani M.R., Kamarehei, F., Dini, M., Aziz Jalilian, F., Moradi, A., Shokoohizadeh, L. (2022). Characterization of *Staphylococcus aureus* isolates from pastry samples by rep-PCR and phage typing. *Iran J. Microbiol.* 14(1): 76-83.
- Del Vecchio, V.G., Petroziello, J.M., Gress, M.J., McClesky, F.K., Melcher, G.P., Crouch, H. K. and Lupski, J.R. (1995). Molecular genotyping of methicillin-resistant *Staphylococcus aureus* via fluorophore-enhanced repetitive-sequence PCR. *J. Clin. Microbiol.* 33(8): 2141-2144.
- Diep, B.A., Remington, F.P. and Sensabaugh, G.F. (2003). Clonal characterization of *Staphylococcus aureus* by multilocus restriction fragment typing, a rapid screening approach for molecular epidemiology. *J. Clin. Microbiol.* **41(10)**: 4559-4564.
- Dini, M., Shokoohizadeh, L., Jalilian, F.A., Moradi, A. and Arabestani, M.R. (2019). Genotyping and characterization of prophage patterns in clinical isolates of *Staphylococcus aureus*. *BMC Res. Notes.* **12**: 669.
- Gardella, N., Picasso, R., Predari, S.C., Lasala, M., Foccoli, M., Benchetrit, G., Famiglietti, A., Catalano, M., Mollerach, M. and Gutkind, G. (2005). Methicillin-resistant *Staphylococcus aureus* strains in Buenos Aires teaching hospitals: Replacement of the multidrug resistant South American clone by another susceptible to rifampin, minocycline and trimethoprim-sulfamethoxazole. *Rev. Argent. Microbiol.* **37(3)**: 156-160.
- Hunter, P. (1990) Reproducibility and indices of discriminatory power of microbial typing methods. J. Clin. Microbiol. 28: 1903-1905.
- Memon, J., Yang, Y., Kashif, J., Yaqoob, M., Buriro, R., Soomro, J., Liping, W. and Hongjie, F. (2013). Genotypes, virulence factors and antimicrobial resistance genes of *Staphylococcus aureus* isolated in bovine subclinical mastitis from Eastern China. *Pak. Vet. J.* 33(4): 486-491.
- Naber, C.K. (2009). Staphylococcus aureus bacteremia: Epidemiology, pathophysiology and management strategies. Clin. Infect. Dis. 48:231-237.

- Nordin, S.A., Wahab, Z.A., Hussin, S. and Rahman, M.M. (2010). Molecular characterization of nosocomial methicillin resistant *Staphylococcus aureus* by Rep-PCR. *Int. J. Infect. Dis.* 9(2): 1-6.
- Pinto, J.B., Rossatto, F.C.P., Martins, P.D. and Frazzon, A.P.G. (2015). Genetic relationships and virulence factors in *Staphylococcus aureus* isolated from raw poultry in South Brazil. *Ann. Microbiol.* 65: 1933-1940.
- Reinoso, E., Bettera, S., Frigerio, C., Di Renzo, M., Calzolari, A. and Bogni, C. (2004). RAPD-PCR analysis of *Staphylococcus aureus* strains isolated from bovine and human hosts. *Microbiol. Res.* 159: 245-255.
- Reinoso, E., Bettera, S., Odierno, L. and Bogni, C. (2007). Rep-PCR of Staphylococcus aureus strains isolated from bovine mastitis in Argentina. Braz. J. Vet. Res. Anim. Sci. 44: 115-121.
- Reinoso, E.B., El-Sayed, A., Lammler, C., Bogni, C. and Zschock, M. (2008). Genotyping of *Staphylococcus aureus* isolated from humans, bovine subclinical mastitis and food samples in Argentina. *Microbiol. Res.* 163(3): 314-322.
- Sharma S.K., Nathawat P., Bhati T., Mohammed N., Choudhary S., Raj R., Solanki S. and Kataria A.K., (2013). Characterization of *Staphylococcus aureus* isolated from nasal discharge from pneumonic camels (*Camelus dromedarius*). *ABAH Bioflux*. 5(1): 38-43.
- Sharma, S.K., Galav, V., Agrawal, M., Faridi, FN. and Kumar B. (2017). Multi-drug resistance pattern of bacterial flora obtained from necropsy samples of poultry. J. Anim. Health Prod. 5(4): 165-171.
- Sharma, R., Singh, M., Kotwal, S.K., Malik M.A. and Chambyalia, H. (2018). Occurrence of multidrug resistant biofilm producing bacteria in veterinary clinical settings. *The Haryana Veterinarian* 57(1): 76-79.
- Shutt, C.K., Pounder, J.I., Page, S.R., Schaecher, B.J. and Woods, G.L. (2005). Clinical evaluation of the diversi lab microbial typing system using repetitive-sequence-based PCR for characterization of *Staphylococcus aureus* strains. *J. Clin. Microbiol.* 43(3): 1187-1192.
- Tenover, F.C., Arbeit, R., Archer, G., Biddle, J., Byrne, S., Goering, R., Hancock, G., Hebert, G.A., Hill, B. and Hollis, R. (1994). Comparison of traditional and molecular methods of typing isolates of *Staphylococcus aureus*. J. Clin. Microbiol. **32(2)**: 407-415.
- Van Belkum, A., Kluytmans, J., Leeuwen, W.V., Bax, R., Quint, W., Peters, E., Fluit, A., Vandenbroucke-Grauls, C., Van den Brule, A., Koeleman, H., Melchers, W., Meis, J., Elaichouni, A., Vaneechoutt, M., Moonens, F., Maes, N., Struelenf, M., Tenover, F. and Verbrugh, H. (1995). Multi-center evaluation of *Staphylococcus aureus* strain. *J. Clin. Microbiol.* 33(6): 1537-1547.
- Verma, S.K., Parul, Sharma, B., Jain, U., Sharma, A., Goswami, M., Singh, P., Aashima, Rathee, A. and Agnihotri, I. (2023). Detection of biofilm forming *Staphylococcus aureus* from mastitic milk. *The Haryana Veterinarian* 62(SI-2): 42-45.
- Yadav, R., Sharma, S.K., Yadav, J., Nathawat, P. and Kataria, A.K. (2015). Typing of *Staphylococcus aureus* obtained from mastitic milk of cattle and buffalo on the basis of coagulase (*coa*) gene RFLP patterns. *Isr. J. Vet. Med.* **70(4)**: 37-41.
- Zehra, A., Gulzar M. and Singh R. (2020). Assessment of correlation between phenotypic and genotypic resistance profile of *Staphylococcus aureus* isolated from meat samples of Punjab, India. *The Haryana Veterinarian* **59(1)**: 13-18.